EFFECTS OF LEAD AND CADMIUM ON SHOOT LENGTH AND ROOT LENGTH OF CASCABELA THEVETIA (L.) LIPPOLD
DOI:
https://doi.org/10.56588/iabcd.v2i1.167Keywords:
Heavy Metals, Lead, Cadmium, Soil Contamination, Root length, Shoot lengthAbstract
Agricultural sustainability and civilization of society enormously depend on land. However, contamination of soil due to heavy metals is a major threat to mankind. Cadmium is one of the most toxic metals in the environment and has noxious effects on vegetative growth. Lead is the second ranked of most widely distributed hazardous substances in the environment and can cause morphological, physiological, and biological dysfunctions in plants. This study investigates the effect of various concentrations of lead and cadmium, i.e. 400mg, 800mg, 1200mg, 1600mg Pb kg-1 and 5mg, 10mg, 15mg, 20mg Cd kg-1, on root length and shoot length of Cascabela thevetia (L.) Lippold. The results states lead treatments have decreased the length of shoot by 19 cm and 11.99 cm of root. Cadmium treatments to the plants have decreased by 20 cm and 11 cm of shoot and root respectively. Higher concentrations of heavy metals in the soil can significantly reduce root lengths and shoot lengths.
References
Aidid, S. B., & Okamoto, H. (1993). Responses of elongation growth rate, turgor pressure and cell wall extensibility of stem cells of Impatiens balsamina to lead, cadmium and zinc. Biometals, 6, 245-249.
Arias, J. A., Peralta-Videa, J. R., Ellzey, J. T., Ren, M., Viveros, M. N., & Gardea-Torresdey, J. L. (2010). Effects of Glomus deserticola inoculation on Prosopis: enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environ. Exp. Bot., 68(2), 139-148.
Bihola, D., Pandya, D., & Mankad, A. (2020). Effect of lead and cadmium on the growth parameters and protein content of Coleus blumei Benth and heavy metal extraction capacity. Int. J. Sci. Res., 9(10), 426-430.
Cimrin, K. M., Turan, M., & Kapur, B. (2007). Effect of elemental sulphur on heavy metals solubility and remediation by plants in calcareous soils. Fres. Env. Bullet., 16(9), 1113-1120.
Das, P., Samantaray, S., & Rout, G. R. (1997). Studies on cadmium toxicity in plants: a review. Environmental pollution, 98(1), 29-36.
Fahr, M., Laplaze, L., Bendaou, N., Hocher, V., Mzibri, M. E., Bogusz, D., & Smouni, A. (2013). Effect of lead on root growth. Fronti. Plant Sci., 4, 175.
Fediuc, E., & Erdei, L. (2002). Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia. J. Plant Physiol., 159(3), 265-271.
Göthberg, A., Greger, M., Holm, K., & Bengtsson, B. E. (2004). Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. J. Env. Quality, 33(4), 1247-1255.
Haider, S., Kanwal, S., Uddin, F., & Azmat, R. (2006). Phytotoxicity of Pb II: changes in chlorophyll absorption spectrum due to toxic metal Pb stress on Phaseolus mungo and Lens culinaris. Pak. J. Biol. Sci., 9(11), 2062-2068.
Jaja, E. T., & Odoemena, C. S. I. (2004). Effect of Pb, Cu and Fe compounds on the germination and early seedling growth of tomato varieties. J. Appl. Sci. Env. Manage., 8(2), 51-53.
Kabata-Pendias, A. (2001). Trace metals in soils-a current issue in Poland. Acta Universitatis Wratislaviensis. Prace Botaniczne, 79, 13-20.
Kevresan, S., Petrovic, N., Popovic, M., & Kandrac, J. (2001). Nitrogen and protein metabolism in young pea plants as affected by different concentrations of nickel, cadmium, lead, and molybdenum. J. Plant Nut., 24(10), 1633-1644.
Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., & Gupta, D. K. (2006). Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 65(6), 1027-1039.
Nas, F. S., & Ali, M. (2018). The effect of lead on plants in terms of growing and biochemical parameters: a review. MOJ Ecol. Environ. Sci, 3(4), 265-268.
Oncel, I., Keleş, Y., & Üstün, A. S. (2000). Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Env. Pollut., 107(3), 315-320.
Prasad, M. N. V., Hagemeyer, J., Saxena, P. K., KrishnaRaj, S., Dan, T., Perras, M. R., & Vettakkorumakankav, N. N. (1999). Phytoremediation of heavy metal contaminated and polluted soils. Heavy metal stress in plants: from molecules to ecosystems, 305-329.
Roy, S., Labelle, S., Mehta, P., Mihoc, A., Fortin, N., Masson, C., Leblanc, R., Chateuneuf, G., Sura, C., Gallipeau, C., Olsen, C., Delisle, S., Labrecque, M., & Greer, C. W. (2005). Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant and soil, 272(1/2), 277-290.
Shah, G. L. (1978). Flora of Gujarat State Vol-I Plub. S.P. University Vallabh Vidhyanagar. Pp 419.
Shanying, H. E., Xiaoe, Y. A. N. G., Zhenli, H. E., & Baligar, V. C. (2017). Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere, 27(3), 421-438.
Shua, W. S., Ye, Z. H., Lan, C. Y., Zhang, Z. Q., & Wong, M. H. (2002). Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Env. Pollut., 120(2), 445-453.
Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Ind. J. Pharmacol., 43(3), 246.
Weigel, H. J., & Jäger, H. J. (1980). Subcellular distribution and chemical form of cadmium in bean plants. Plant physiology, 65(3), 480-482.