

7 ABCD INTERNATIONAL ASSO

E-ISSN: 2583-3995

DIVERSITY OF PHYTOPLANKTON IN RANI LAKE, IDAR, GUJARAT

Nupur A. Vijayanshi¹, Umerfaruq M. Qureshimatva² and Hitesh solanki³

 ¹Department of Botany, Bioinformatics and Climate Change Impact Management, University School of Science, Gujarat University, Ahmadabad.
²Department of Botany, Bioinformatics and Climate Change Impact Management, UniversitySchool of Science, Gujarat University, Ahmadabad.
³Department of Botany, Bioinformatics and Climate Change Impact Management, UniversitySchool of Science, Gujarat University, Ahmadabad.
³Department of Botany, Bioinformatics and Climate Change Impact Management, UniversitySchool of Science, Gujarat University, Ahmadabad.
³Department of Botany, Bioinformatics and Climate Change Impact Management, UniversitySchool of Science, Gujarat University, Ahmadabad.

ABSTRACT

Phytoplankton are accumulations of diverse microscopic algal forms whose movement is more or less dependent upon water currents. To know the nature of species composition of phytoplankton and their significance, the present observations were made in the Rani Lake, Idar. The study revealed the occurrence of 65 species belong to 45 genera. Phytoplankton represented by class members of Chlorophyceae. Bacillariophyceae, Cyanophyceae and Euglenophyceae. The algal flora of polluted water bodiesshowed the dominance of green algae.

Keywords: Phytoplankton, diversity, Rani lake, Idar

INTRODUCTION

Phytoplankton is the basis of trophic chain and the most important biological community in any aquatic system (Monbet, 1992; Sin et al., 1999). Phytoplankton act as primary producers and represent themselves as a direct food source for other aquatic animals. The community composition of phytoplankton is largely influenced by the interaction of several physicochemical factors. Physico-chemical factors like pH, DO, alkalinity and the dissolved nutrients affect the phytoplanktonic production. Plankton diversity quickly responds to change in the environment of aquatic system, particularly in relation to nutrients. The plankton communities in terms of tolerance, abundance, diversity and dominance in the habitat. Plankton population observation may be used as a reliable tool for biomonitoring studies to measure the pollution status of water (Mathivanan and Jayakumar, 1995). Several phytoplanktonic species have served as bioindicators (Vareethiah and Haniffa, 1998; Bianchi et al. 2003). Phytoplankton are the diagnostic tools in assessing water quality and hydrological status as suggested (Nwankwo, 2004). Phytoplankton fluctuation and diversity are widely used as biological determinates of water quality in freshwater.From phytoplankton density and species composition in tropical lakes, the annual cycle and biological distinctiveness can be established (Palmer, 1977; Shubert, 1984). Variation in phytoplankton community composition depends on the availability of nutrients, temperature, light intensity and on other limnological factors. Phytoplankton follows a recognizable annual cycle of growth, but sometimes the synchrony in their normal annual cycleis disrupted by explosive growth of some species (Vaulot, 2001). Diversity, distribution, and variation in the biotic parameters provide a good indication of energy turnover in aquaticenvironments (Forsberg, 1982). Phytoplankton sensitivity and fluctuation in species composition are usually a suitable explanation to determine the alteration within an ecosystem. Speciesdiversity responds to changes in environmental gradients and may characterize many interactions that can establish the intricate pattern of community structure (Devassy and Goss, 1988).

MATERIALS AND METHODS

Idar

Idar is a town in Sabarkantha district, Gujarat, India. Idar is located at 23°50′N 73°00′E / 23.83°N 73.0°E on average elevation of 195 m. Idar is at the southern end of the Aravalli hills.

INTERNATIONAL ASSOCIATION OF BIOLOGICALS AND COMPUTATIONAL DIGEST

Town is recognized for the production of handmade wooden toys, tiles, its temples and various beautiful architectural monuments on hill. Idar is home to the very scenic and attractive mountains with round shaped grey or red granite rocks.

Rani Talav lake has an area of 94 acres and a depth of 17 feet. Its supply water throughout the year for irrigation. The east side of the lake is stacked with masonry steps. In the centre of the lakeThe Pavapuri Jain temple is built recently. The pavapuri temple is built among the RaniTalav, around 72 feet high, 72 feet long and is built on 72 pillars.

Figure 1: Satellite image of Idar showing study area Rani Lake.

This phytoplankton study was conducted during December 2017 to March 2018. For phytoplankton studies, samples were collected in 1 liter labeled plastic containers by filtering 50 L ofwater, using a phytoplankton net (20 μ m) and immediately preserved with 4% formalin and fixed with 4% formaldehyde for analysis. Enumerations were carried out using an Olympus CH–2 light microscope (10×, 20× or 40×). The planktons were identified through the available literature such as 'The Fresh Water Alage' by Priscott; 'Fresh Water Diatoms of Maharashtra' by

P. T. Sarode (1984); 'Marine & Freshwater Plankton' by Davis (1966) and 'Identification of the most common Freshwater Algae' by Janse Van Vuuren (2005). Identification at species level wasattempted and detailed information on phytoplankton.

RESULTS AND DISCUSSION

The phytoplankton diversity in Rani lake was represented by members of Cyanophyceae, Bacillariophyceae, Chlorophyaceaand Euglenophyceae shown in Table1. Phytoplankton identified at Rani lakecomprised a total of 65species belong to 45 genera. Chlorophyceae formedthe most dominant taxa and contributed 30 species followed by Bacillariophyceae, 22 species, Cyanophyceae 8 species and Euglenophyceae 6 species. The percentage distribution of Phytoplankton communities in the Rani lake by divisions was as follows: Chlorophyta (46%), Bacillariophyceae (33%), Cyanophyta (12%) and Euglenophta (9%).

Phytoplankton of the Rani lake, Idar, Sabarkantha					
Sr.	Class	Genus	Family		
No.					
1		Anabaenaspp.	Nostocaceae		
2		Lyngbyaspp.	Oscillatoriaceae		
3		Merismopediaspp.	Merismopediaceae		
4		Oscillatoria curviceps	Oscillatoriaceae		

Table 1: Taxonomic composition of phytoplankton

Volume I Issue II July-December 2022 https://iabcd.org

International & Peer-Reviewed Journal E-ISSN: 2583-3995

E	Cronor have a -	Oppillatorialimana	Oppillataria
5 6	Cyanophyceae	Oscillatorialimosa	Oscillatoriaceae Oscillatoriaceae
0	_	Oscillatoriaprinceps	
/		Scytonemaspp. Spirulinaspp.	Scytonematacae
8 9		Achnanthidiumspp.	Spirulinaceae Achnanthidiaceae
9 10	_		
10	_	Aulacosierathwaites	Aulacoseriaceae
$\frac{11}{12}$	_	Craticulacuspidata	Stauroneidaceae
12	_	Cymbella cistula	Cymbellaceae
	_	Cymbella tumida	Cymbellaceae
14 15	_	Diatomaspp.	Fragilariaceae
	_	Fragialariaspp.	Fragilariaceae
16	_	Gleotaenum crotonensis	Gleotaenaceae
17	_	Gomphonema gracile	Gomphonemataceae
18	_	Gomphonema truncatum	Gomphonemataceae
19	_	Gomphonema turris	Gomphonemataceae
20	_	Gyrosigmaspp.	Pleurosigmataceae
21	_	Naviculacryptocephala	Naviculaceae
22 23	Bacillariophyceae	Naviculaspp Nitzachiafiliformia	Naviculaceae
23	-	Nitzschiafiliformis Nitzschiagizmeidez	Bacillariaceae
24 25	-	Nitzschiasigmoidea Nitzschialinearis	Bacillariaceae
25 26	_	Pinnulariaspp.	Bacillariaceae
20 27	_		Pinnulariaceae
27 28	_	Pleurosigmaspp.	Pleurosigmataceae
28 29	_	Stauronesisanceps	Stauroneidaceae Stauroneidaceae
29 30		Stauronesisphoenicenteron	
30 31	_	Actinotaeniumexiguum Ankistrodesmusfalcatus	Conjugatophyceae
31 32	Chlorophyceae		Selenastraceae
32 33	Chilorophyceae	Ankistrodesmusfusiformis Ankistrodesmusspiralis	Selenastraceae Selenastraceae
33 34		Charaspp.	Characeae
34 35	_	Charaspp. Choleochaetespp.	Coleochaetaceae
36	_	Coelastrumastroideum	Scendesmaceae
30 37	_	Coelastrumreticulatum	Scendesmaceae
38		Cosmeriumquadrum	Desmidiaceae
39		Cosmeriumrectangulare	Desmidiaceae
39 40		Cosmeriumochthodes	Desmidiaceae
41		Elakatothrixspp.	Elakatotrichaceae
41 42	-	Hydrodictyonspp.	Hydrodictyaceae
4 <u>2</u> 43	-	Monoraphidiumspp.	Selenastraceae
43 44	-	Nitellatenuissima	Characeae
44 45	-	Oocystisspp	Oocystaceae
45 46	-	Pandorinaspp	Volvocaceae
40 47	-	Pediastrumangulosum	Hydrodictyaceae
48	-	Pediastrumtetras	Hydrodictyaceae
49	-	Pediastrumwillei	Hydrodictyaceae
49 50	-	Scendesmusarcuatus	Scendesmaceae
50	-	Scendesmusellipticus	Scendesmaceae
52	-	Scendesmusquadricauda	Scendesmaceae
52 53	-	Selenastrumbibraianum	Selenastraceae
53 54	-	Spirogyra majuscula	Zygnemataceae
54 55	-	Staurastrumspp	Desmidiaceae
55 56	-	Stegiocoloniumspp	Chaetophoraceae
50 57	-	Tetradesmusacuminatus	Scendesmaceae
57 58	-	Ulothrixmoniliformis	Ulothrichaceae
58 59	-	Zygnemaspp	Zygnemataceae
59 60		Euglinadeses	
00		Bugunuueses	Euglenaceae

INTERNATIONAL ASSOCIATION OF BIOLOGICALS AND COMPUTATIONAL DIGEST

International & Peer-Reviewed Journal E-ISSN: 2583-3995

61	
62	
63	Euglenophyceae
64	
65	

Euglinasociabilis	Euglenaceae	
Lepocinclisfusiformis	Euglenaceae	
Monomorphinapyrum	Euglenaceae	
Phacuscurvicauda	Euglenaceae	
Phacuspleuronecetes	Euglenaceae	

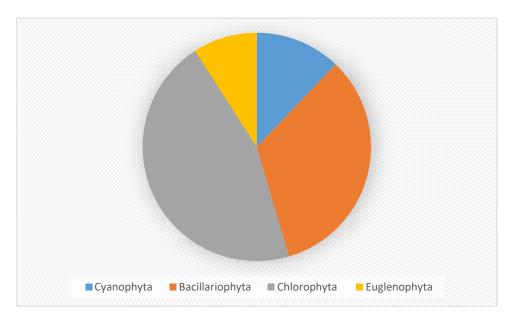
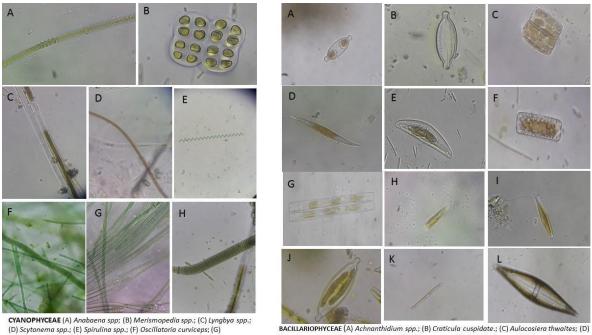
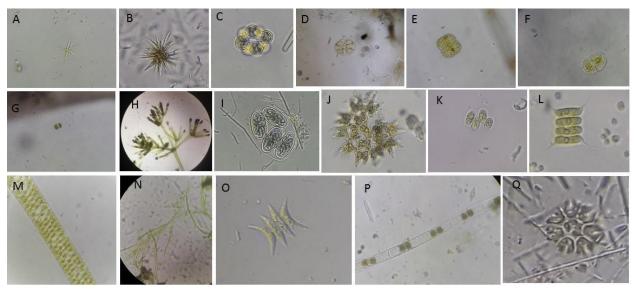
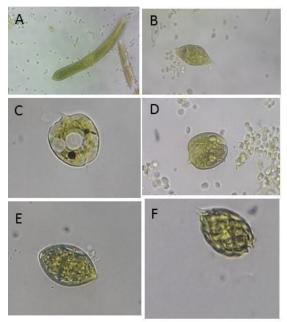



Figure 2: Distribution of phytoplankton in Rani lake.

Oscillatoria limosa; (H) Oscillatoria princeps

Gyrosigma spp: [E] (ymbella cistula; [D Jatoma spp: [G] Gragialaria spp: [H] Gomphonema gracile; (I) Gomphonema truncatum; (J) Navicula cryptocephala; (K) Nitzschia sigmoidea; (L) Stauronesis anceps


Figure 3: Microphotographic images of Cyanophyceae and Bacilariophyceae



International & Peer-Reviewed Journal E-ISSN: 2583-3995

CHLOROPHYCEAE (A Ankistrodesmus falcatus; (B Ankistrodesmus spiralis.; (C) Coelastrum reticulatum; (D) Cosmarium ralfsii; (E)Cosmarium qudrum; (F)Cosmarium ochthodes.; (G) Cosmarium spp.; (H) Nitella tenuissima; (I)Oocystis spp.; (J) Pediastrum angulosum; (K) Scendesmus arcuatus; (L) Scendesmus quadricauda; (M) Spirogyra majuscule; (N) Stegiocolonium spp.; (O) Tetradesmus acuminatus; (P) Zygnima spp; (Q) Pediastrum tetras

Figure 4: Microphotographic images of Cholophyceae.

EUGLENOPHYCEAE

 (A) Euglina deses; (B)Euglina sociabilis; (C)Phacus curvicauda; (D) Phacus pleuronectes; (E) Lepocinclis fusiformis; (F) Monomorphina pyrum

Figure 5: Microphotographic images of Euglenophyceae

CONCLUSION

Knowledge about phytoplankton provide valuable insights into water quality, indicating concernssuch as pollution of waterways, reduction in water flow, or a health and safety risk, as some algalspecies are highly toxic to humans and livestock. The present study was aimed to list the diversity of phytoplankton in Rani lake, Idar. This is the pioneer work on freshwater phytoplankton inRani lake. Phytoplankton identified at Rani lake comprised a total of 65 species belong to 45 genera. Chlorophyceae formed the most dominant class.

https://iabcd.org

INTERNATIONAL ASSOCIATION OF BIOLOGICALS AND COMPUTATIONAL DIGEST

REFERENCES

- 1) Mathivanan V and Jayakumar S (1995) The studies on plankton fluctuation in a reservoir of Annamalainagar. Proceedings of the national symposium on recent trends in Indian wild life research, AVC college, Mayiladuthurai, Tamilnadu, India.
- 2) Monbet Y (1992) Control of phytoplankton biomass in estuaries: a comparative analysis of microtidal and macrotidal eastuaries, *Estuaries.*, 15:563-571.
- 3) Sin, Y, Wetzel RL, Anderson IC (1999) Spatial and temporal characteristics of nutrient and phytoplankton dynamics in the York River estuary, Virginia: Analysis of long-term data, *Estuaries.*, 22 260-275
- 4) Vaulot D (2001) *Phytoplankton. Encyclopedia of Life Sciences.* Nature Publishing Group. London.
- 5) Palmer CM (1977) Algae and water pollution, U.S. Environmental Protection Agency, Cincinnati, Ohio. EPA-600/9-77-036.
- 6) Shubert LE (1984) *Algae as ecological indicators*. Department of Biology, University of North Dakota, Grand Forks, USA.
- 7) Forsberg C (1982) Limnological research can improve and reduce the cost of monitoring and control of water quality, *Hydrobiol*; 86 : 143-146.
- 8) Devassy VP, Goss JI (1988) Phytoplankton community structure and succession in tropical estuarine complex (Central West Cost of India), Estuarine, *Costal Shelf Sci.*; 27 : 671-685.
- 9) Bharati, S.G. and Krishnamurthy, S.R. (1991). Benthic Algae: their ecological significance in Tiver Kali, Dandeli, Karnataka, India. *Phykos* 30(1&2): 153-163.