

POLLEN STRUCTURE IN SELECTED SPECIES OF MAHARAJA KRISHNAKUMASINHJI BHAVNAGAR UNIVERSITY, BHAVNAGAR DISTRICT, GUJARAT STATE, INDIA

Hinal K. Baroliya^{*}, Jay B. Pandya and Shailesh K. Mehta

Sir P.P. Institute of Science, Maharaja Krishnakumasinhji Bhavnagar University,Bhavnagar, 364002, Gujarat, India

Corresponding author mail: *hinalbaroliya25@gmail.com Email -

ABSTRACT

Palynology, scientific discipline concerned with the study of plant pollen. Pollens are male reproductive cells in plants, very tiny grains produced by the stamens of flower. Pollen represents the land flora and can be used in many different disciplines. Pollencan be used to determine pollination mechanisms, therapeutic activity and source zone of pollinators. The present investigation deals with the study of pollen taxa of Twenty

(20) species of Maharaja Krishnakumasinhji Bhavnagar University, Bhavnagar, and Gujarat, India. These pollen taxa belong to seventeen (17) different families. The pollen of these families has diversity in morphological characters viz, shape, attachment of filament, type of pollen and ornamentation. This study provides Palynological data of pollen taxa, which will helpful in future

Keywords: Pollen structure, shape, Palynology, Bhavnagar

INTRODUCTION

Maharaja Krishnakumasinhji Bhavnagar University located at middle of Bhavnagar city in Bhavnagar district of Saurashtra region of Gujarat state of India. Bhavnagar is coastal city on eastern coast of Saurashtra, located at 21.7° N 72.15° E and is surrounded by Botad and Ahmadabad in north, Amreli in west and Gulf of Khambhat in South and East. It has Dry scrub forest with diversity in flora.

The present study reveals the pollen diversity and morphological characteristics of related species. Palynology is the study of pollen. Also pollen morphology is useful to identify and characterization plant species for taxonomic purpose pollen morphological structure show variation due to its typical character (figure printing) and chemical composition. Palynological studies are not only useful in taxonomy but also to know explorative plants by means of Melissopalynology studies. The pollen architecture is a unique feature in plant morphological identification and thus finds imperative implication in plant taxonomy. The microscopic structure of male gametophyte is secured inside an outer exine made up of sporopollenin.

MATERIALS AND METHODS

Materials:

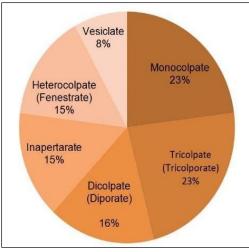
The material for the present investigation has been collected from various places Maharaja Krishnakumasinhji University campus area Bhavnagar. The material is to be collected the freshlyopened materials of the flower which have been collected. Anther is removed with the help of cleanforceps and modernly fix into 70% alcohol.

Methodology:

Slides were prepared to observe under the microscope according to method describe by Nair (1970), polled grains are treated for acetolysed and non- acetolysed on the slides. The acetolysis method is still highly successful technique in palynology. Acetic acid destroys material with the exception of sporopollenin that forms the outer exine wall. The pollen grain which not acetolysed in 70% acetic acid. The plant material which not acetolysed that

unacetolysed by 90% alcohol method in which the polliniferous material were crushed in alcohol and sieved (Erdtman G. 1960) The pollen grain was stained with safranin & acetocarmine stain and observes under microscope (Bolick, M. R. 1978). Anthers structures were studied with the help of stereo microscope and Pollen materials were studied under a light microscope.

RESULT & DISCUSSION


Angiosperm plants at Maharaja Krishnakumasinhji university area including indigenous, cultivated and naturalized plants. The study area shows pollen diversity comprises of 20 species belong to 17 angiosperm families. The following table. No 1 gives the type of pollen, symmetry, number of stamens, cohesion of stamens, and attachment of filament with anther lobe. (Figure 1) gives the percentage of pollen and (Figure 2) gives the percentage of diversity in stamen with the help of above observation various type of pollen grains having difference in their morphology. On the basis of types of lobe which present on symmetry among that Heterocolpate, Monocolpate and Tricolpate type of pollen grains are majorly found from my study area. According to pollen descriptions from pollen grains, their structure, identification and significance in science by R. P. Wodehouse (1935) the present study show, Agave Americana L. (plate 1, Sr. 1) in that the pollen has bilateral symmetry, on the basis of range of aperture number, position and character this species contains one Lobe Monocolpate and monodelphous cohesion of stamens(Erdtman 1952). Calliandra haematocephala L. (plate 1, Sr. 2) in that the pollen has radial symmetry, Vesiclate type of pollen and monodelphous cohesion of stamens. Callistemon viminalis L. (plate 1, Sr. 3) that pollen has bilateral symmetry, Dicolpate type of pollen and monodelphous cohesion of stamens. Celosia argentea L. (plate 1, Sr. 4) has Bilateral type of symmetry, Inapertarate type of pollen and monodelphous cohesion of stamens. Commelina benghalensis L. (plate 1, Sr. 5) that pollen has radial symmetry, Heterocolpate type of pollen and monodelphous cohesion of stamens. Crinum asiaticum L. (plate 2, Sr. 6) that pollen has bilateral symmetry, Heterocolpate type of pollenand monodelphous cohesion of stamens (Jameela et al., 2014)). Dahlia variabilis L. (plate 2, Sr. 7) that pollen has radial symmetry, Heterocolpate type of pollen and Syngenesious cohesion of stamens. Duranta repens L. (plate 2, Sr. 8) has bilateral, inaperture type of pollen and didynamous cohesion of stamens. Euphorbia mili L. (plate 2, Sr. 9) that pollen has bilateral symmetry, inaperture type of pollen and syngenesious cohesion of stamens. Hibiscus rosa sinensis L (plate 2, Sr. 10) that pollen has bilateral symmetry, heterocolpate type of pollen and monodelphous cohesion of stamens (Arora et al., 2014). *Ipomoea purpurea L.* (plate 3, Sr. 11) has radial symmetry and heterocolpate type of pollen and monodelphous cohesion of stamens. Ixora coccinea L. (plate 3, Sr. 12) has bilateral symmetry and tricolpate type of pollen and monodelphouscohesion of stamens (A Lgersheim et al, 1990). Jetropha integerrima L. (plate 3, Sr. 13) has Bilateral type of symmetry, monocolpate type of pollen and didynamous cohesion of stamens. Mimesa pudica L. (plate 3, Sr. 14) has Radial type of symmetry, monocolpate type of pollen and monodelphous cohesion of stamens. Ocimum canum L. (plate 3, Sr. 15) has Radial type of symmetry, monocolpate type of pollen and monodelphous cohesion of stamens. Portulaca oleracea L. (plate 4, Sr. 16) has Radial type of symmetry, monocolpate type of pollen and adolphuscohesion of stamens. Punica granatum L. (plate 4, Sr. 17) Radial type of symmetry and heterocolpate type of pollen and adolphus cohesion of stamens. Tacoma stans L. (plate 4, Sr. 18)Bilateral type of symmetry, tricolpate type of pollen and monodelphous cohesion of stamens. Tradescantia spathacea L. (plate 4, Sr. 19) Radial type of symmetry, monocolpate type of pollen and monodelphous cohesion of stamens. Tradeseantia pauida L. Radial type of symmetry, inaperturate type of pollen and monodelphous cohesion of stamens.

INTERNATIONAL ASSOCIATION OF BIOLOGICALS AND COMPUTATIONAL DIGEST

International & Peer-Reviewed Journal E-ISSN: 2583-3995

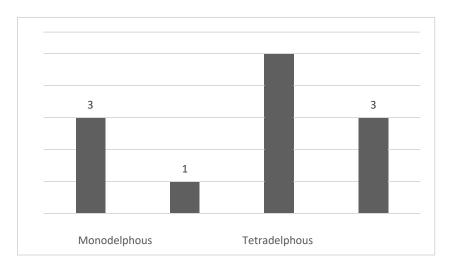
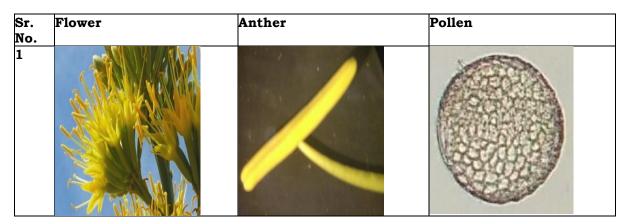


Figure – 1: Types of Pollen Figure – 2: Diversity of Stamen

Sr					Attachm		Symme
•					ent of	E	try
no.	scientific		No. of	Cohesion of	Filamen t	Type of	
	Name	Family	stamens	Stamens	with	Pollen	
					Anther		
					Lobe		
	Agave	Asparagace	Monoqndr	Monodelp		Monocolp	Bilateral
1	americanaL.	ae	ous	hous	Versatile	ate	
	Calliandra		Polyandro	Monodelp	Basifixed		
2	haematocep	Fabaceae	us	hous		Vesiclate	Radial
	hala L.						
3	Callistemon	Myrtaceae	Polyandro	Monodelp	Dorsifix	Dicolpate	Bilateral
	viminalis L.		us	hous	ed	(Diporate)	
4	Celosia	Amarantha	Monoandr	Monodelp	Basifixed	Inapertar	Bilateral
	argentea L.	ceae	ous	hous		ate	
	Commelina	Commelina	Tetraandr	Monodelp	Dorsifix	Heterocol	
5	benghalensi	ceae	ous	hous	ed	pate	Radial
	s L.						
6	Crinum	Amaryllida	Polyandro	Monodelp	Versatile	Heterocol	Bilateral
	asiaticum L.	ceae	us	hous		pate	

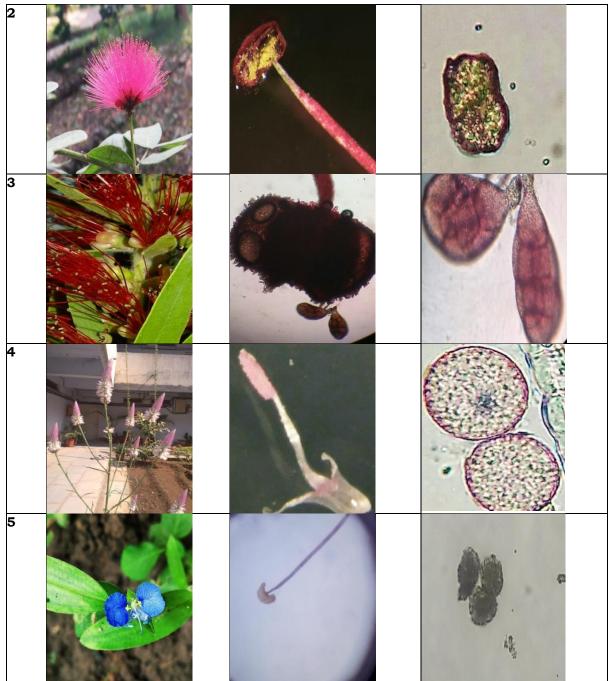


INTERNATIONAL ASSOCIATION OF BIOLOGICALS AND COMPUTATIONAL DIGEST

International & Peer-Reviewed Journal E-ISSN: 2583-3995

						Heterocol	
	Dahlia		Pentaandr	Syngenesio	Basifixe d	pate	
7	variabilis L.	Asteraceae	ous	us		(Fenestrat	Radial
						e)	
8	Duranta	Verbenacea e	Pentaandr	Didynamo	Adnate	Inapertar	Bilater al
	repens L.		ous	us		ate	
9	Euphorbia	Euphorbiac	Monoandr	Syngenesio	Adnate	Dicolpate	Bilater al
	mili L.	eae	ous	us		(Diporate)	
	Hibiscus					Heterocol	
	rosa		Polyandro	Monodelp	Basifixe d	pate	Bilater al
10	sinensis L.	Malvaceae	us	hous		(Fenestrat	
						e)	
11	Ipomoea	Convolvula	Pentaandr	Monodelp	Dorsifix	Heterocol	Radial
	purpurea L.	ceae	ous	hous	ed	pate	
	Ixora		Tetraandr	Monodelp	Basifixe d	Tricolpate	Bilater al
12	coccinea L.	Rabiaceae	ous	hous		(Tricolpor	
						ate)	
	Jetropha	Euphorbiac	Pentaandr	Didynamo	Dorsifix	Monocolp	Bilater al
13	integerrima	eae	ous	us	ed	ate	
	L.						
14	Mimesa	Fabaceae	Tetraandr	Monodelp	Basifixe d	Monocolp	Radial
	pudica L.		ous	hous		ate	
15	Ocimum	Lamiaceae	Pentaandr	Monodelp	Dorsifix	Monocolp	Radial
	canum L.		ous	hous	ed	ate	
16	Portulaca	Portulacace	Polyandro	Adolphus	Basifixe d	Monocolp	Radial
	oleracea L.	ae	us			ate	
17	Punica	Punicaceae	Polyandro	Adolphus	Basifixe d	Heterocol	Radial
	granatum L.		us			pate	
	Tacoma	Bignoniace	Pentaandr	Monodelp		Tricolpate	Bilater al
18	stans L.	ae	ous	hous	Versatile	(Tricolpor	
						ate)	
	Tradescanti	Commelina	Polyandro	Monodelp		Monocolp	
19	a spathacea	ceae	us	hous	Versatile	ate	Radial
	<i>L</i> .						
20	Tradeseanti	Commelina	Polyandro	Monodelp	Versatile	Inapertar	Radial
	a pauida L.	ceae	us	hous		ate	

Table 1 Showing Morphological characteristic of Anther & pollen



i ABCD

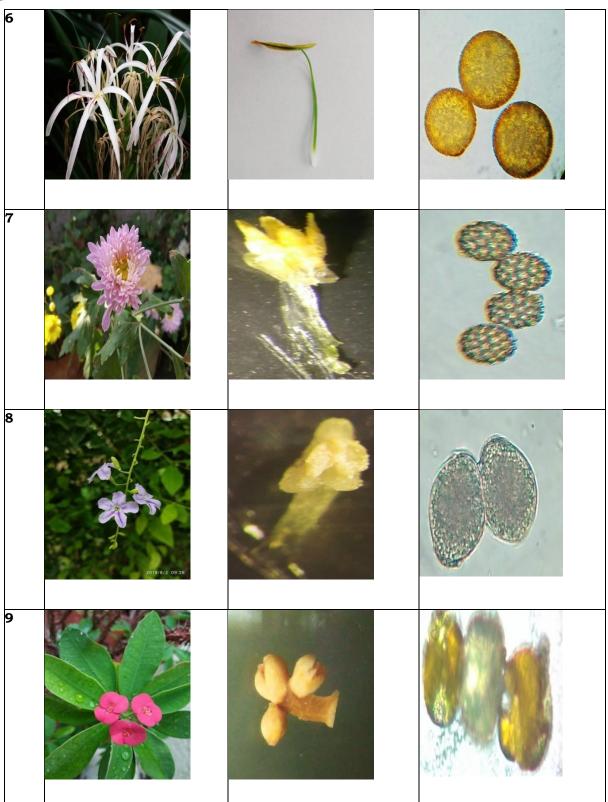
INTERNATIONAL ASSOCIATION OF BIOLOGICALS AND COMPUTATIONAL DIGEST

International & Peer-Reviewed Journal E-ISSN: 2583-3995

Plate No. 1 – 1. Agave americana L. 2. Calliandra haematocephala L. 3. Callistemon viminalis

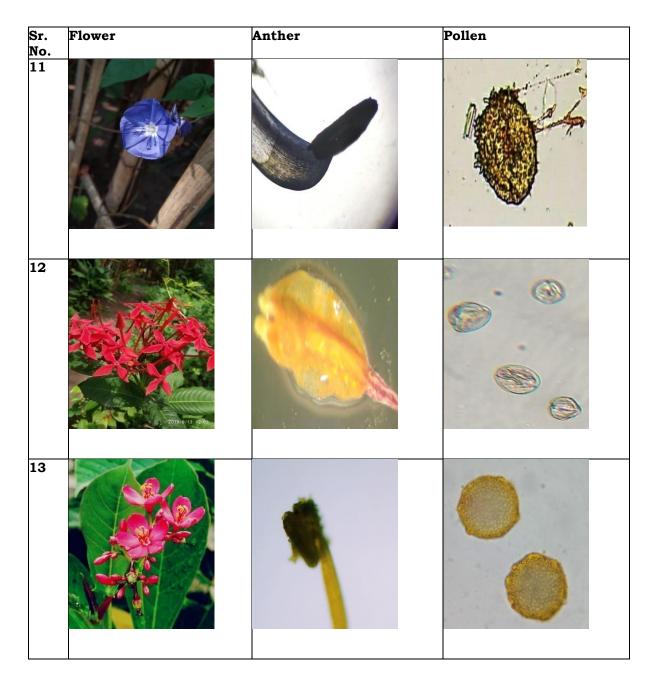
L.4. Celosia argentea L. 5. Commelina benghalensis L.

Sr.	Flower	Anther	Pollen
No.			


https://iabcd.org

i ABCD

International & Peer-Reviewed Journal E-ISSN: 2583-3995

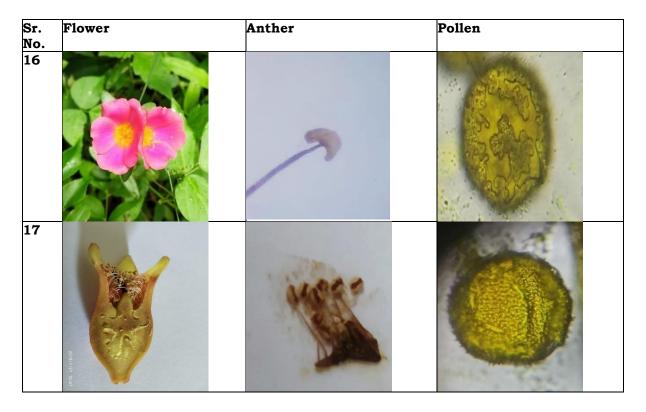


International & Peer-Reviewed Journal E-ISSN: 2583-3995

Plate No. 2 – 6. Crinum asiaticum L. 7. Dahlia variabilis L. 8. Duranta repens L. 9. Euphorbia mili L. 10. Hibiscus rosa sinensis L.

https://iabcd.org

i ABCD


INTERNATIONAL ASSOCIATION OF BIOLOGICALS AND COMPUTATIONAL DIGEST

International & Peer-Reviewed Journal E-ISSN: 2583-3995

Plate No. 3 – 11. Ipomoea purpurea L. 12. Ixora coccinea L. 13. Jetropha integerrima *L*. 14.

Mimesa pudica L. 15. Ocimum canum L.

https://iabcd.org

International & Peer-Reviewed Journal E-ISSN: 2583-3995

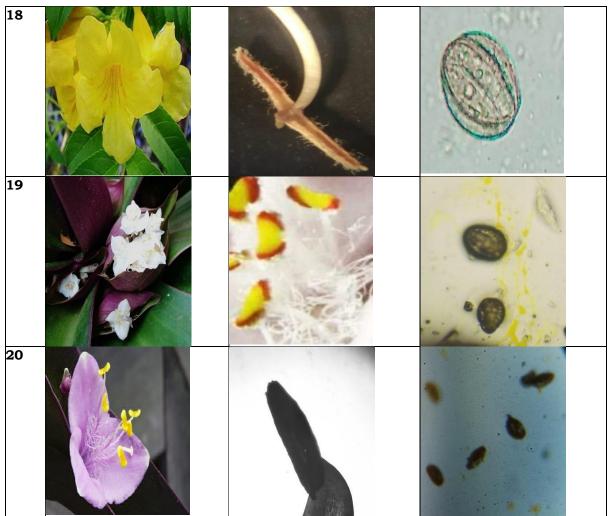


Plate No. 4 – 16. Portulaca oleracea L. 17. Punica granatum L. 18. Tacoma stans L. 19. Tradescantia spathacea L. 20. Tradeseantia pauida L.

CONCLUSION

The above observation various type of pollen grains having difference in their morphology such per its symmetry and lobs. Among that Ten (10) species have radial symmetry and Ten (10) specieshave bilateral symmetry in which Heterocolpate, Monocolpate and Tricolpate type of pollen grains are majorly found from area. So that this morphological analysis further useful in therapeutic activity and allergen pollen assay to determine.

REFERENCES

- 1) A Lgersheim. (1993) Gynoecium development in Rubiaceae- Vanguerieae, with particular reference to the "stylar head"- complex and secondary pollen presentation, Plant Systematics and Evolution 187 (1-4), 175-190, 1993
- 2) Blackmore, S. (1982b). A functional interpretation of Composite pollen. *Plantsystematics and evolution* 141: 153-168.
- 3) Blackmore, S. (1982b). Palynology of subtribe Scorzonerinae and its taxonomic significance. *Grana* 21: 149-160.
- 4) Blackmore, S. (1982c). The apertures of Lautuceae pollen. *Pollen et Spores* 24:453-462.
- 5) Bolick, M.R. (1991). Pollen diameter, exine thickness, and ultra-structure type in thetribes of the Composite. *Newsletter*. 19: 17-21
- 6) Bolick, M.R. (1978). Taxonomic, evolutionary, and functional consideration of Composite pollen structure and sculpture. *Plant syst.* Evol. 130: 209-218
- 7) Bolick, M.R. (1991). Pollen diameter, exine thickness, and ultra-structure type in thetribes of the Composite. *Newsletter*. 19: 17-21
- 8) Carreira, L.M.M. (1976). Pollen morphology of woody plants of the campina. Acta

Volume I Issue II July-December 2022

INTERNATIONAL ASSOCIATION OF BIOLOGICALS AND COMPUTATIONAL DIGEST

i ABCD

Amazonica 6(3): 247-269.

- 9) Chen Miaolin, Xu Jie, Origin and functional predication of pollen allergens in plants, University of Australia.
- 10) Erdtman, G. (1952). An introduction to palynology I. Pollen Morphology and Plant Taxonomy: Angiosperm Vol.1.
- 11) Erdtman G. (1960). The Acetolysis Method, a revised description (561-564) Svensk botanisk Tidsrift.
- 12) Edlund Anna, Preuss Daphne, Pollen and stigma structure and function: the rule of diversity in pollination, University of Chicago, Chicago.
- 13) Khatoon J. (2014). Effect of cellular tower radiation on pollen fertility in Crinumasiaticum.
- 14) Komal Arora. (2014) Pollen Identification of Hibiscus rosa sinensis and Sida acuta
- 15) through Spectrocopy.
- 16) Ramkrishna H. and Swathi S. (2013). Pollen diversity in some Apis flora honeys from Adilabad district, Andhra Pradesh, India.
- 17) Ramkrishna H. and Kailas J. (2016). Inapeaturate pollen diversity in arborescent taxa of Karimnagar district, Telangana state (374-377)
- 18) Vasil, I. K. (1974). The histology and physiology of pollen of germination and pollentube on the stigma and in style, p. 105-118.
- 19) Wodehouse, R. P. (1930). Pollen grains in the identification and classification of plants.
- 20) V. Haplopappus and other astereaece: the origin of their furrow configuration. *BullTorrey bot. club* 57, 21-46.
- 21) Wodehouse, R. P. (1931). The origin of the six furrowed configuration of Dahlia pollen grains. Bull Torry Bot. Club57, 371-380.