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ABSTRACT 
Agriculture plays a central role in safeguarding the region’s food supply and achieving the 

second UN Sustainable Development Goal of zero hunger by 2030. However, the agriculture 

sector faces challenges from changing consumer demand, demographics, inefficient value 

chains, climate change and water shortage. Climate change is already impacting significantly 
on agriculture and food production in developing countries. Agriculture has been able to keep 

up with the rising demand for food and other agricultural goods because of the development 

of new farming techniques throughout the previous century. Natural resources will 

undoubtedly be further stressed as result of rising food demand, population growth, income 

levels, etc. New methods and approaches should be able to meet future food demands while 

maintaining or lowering agriculture’s environmental imprint as the detrimental effects of 
agriculture on the environment become more widely acknowledged. 

The application of remote sensing in agriculture can aid the evolution of agricultural practices 

that face different types of challenges by providing information related to crop status at 

different scales all through the season. Making educated management decisions with the help 

of emerging technologies including geospatial technology, the Internet of Things (IoT), Big 
Data analysis, and artificial intelligence (AI). To maximize agricultural inputs, boot 

agricultural production, and decrease input losses, precision agriculture (PA) uses a variety 

of such technologies. Over the past few decades, there has been a sharp expansion in the use 

of remote sensing technology for PA (precision agriculture). It is crucial to investigate and 

design an easy-to-use yet dependable workflow for the real-time use of remote sensing in PA 

(precision agriculture) given the complexity of image processing and the quantity of technical 
knowledge and skill required. Wider usage of remote sensing technologies in commercial and 

non-commercial PA (precision agriculture) applications is likely to result from the 

development of accurate yet simple-to-use, user-friendly systems. 
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INTRODUCTION: 
 Techniques for remote sensing are frequently employed in agronomy and agriculture. Remote 
sensing is required because agricultural activity monitoring presents unique challenges not 

encountered in other economic sectors (FAO) (2011). The first thing to note is that agricultural 

output adheres to distinct seasonal patterns linked to the biological lifespan of crops. 

Production is further influenced by climate driving factors, agricultural management 

techniques, and the physical environment (such as soil type). In both space and time, all 

variables are highly changeable. Moreover, timely agricultural monitoring systems are 
necessary since productivity might fluctuate quickly due to unfavourable growing conditions. 

Consequently, as the Food and Agriculture Organization noted a key element of agricultural 

statistics and related monitoring systems is the requirement for timeliness; information is of 

little use if it is made available too late. As it is extremely suitable for gathering information 

across vast areas with high revisit frequency, remote sensing may greatly contribute to 
presenting a timely and accurate picture of the agriculture sector. 

With the first deployment of the Landsat Multispectral Scanner System (MSS) satellite in 

1972, RS technologies were first used in agriculture. Landsat MSS was utilised by Bauer and 

Cipra to categorise the agricultural landscapes of the US Midwest into corn or soybean farms. 

However, due to the limited supply of high spatial (>5m) and temporal (daily) resolution 
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satellite data, the use of satellite-based data for PA (precision agriculture) has, until recently, 

been minimal and restricted only to the large-scale monitoring and mapping of agricultural 
health. RS technologies can now be applied at a scale considerably smaller than a field thanks 

to technical improvements in global positioning systems (GPS), machinery, hardware, and 

software, cloud computing and the Internet of Things (IoT). 

Various RS systems, including as handheld, aeroplane, and satellite are currently in use. 

These platforms can be used to collect data at various spatial, temporal and spectral 

resolutions. The best PA (precision agriculture) resolutions will rely on a number of variables, 
such as management goals, crop growth stages, field size and the ability of farm equipment 

to alter inputs (fertiliser, pesticides, irrigation). For instance, in order to distinguish crop 

traits (such as leaves and area) at the stand level, better spatial resolution data (0.1m) are 

crucial for the ability to identify crop emergence (1-3m) (Fernandez-Ordonez et al., 2017). 

Visible imagery cannot identify some patterns in multispectral imagery that are used to 
monitor crop health (Yao, X. et al., 2017). Moreover, thermal imaging is effective for identifying 

pest pressure soil moisture and crop water stress that cannot be seen with the human eye 

(Calderon et al., 2013). Microwaves, which are less susceptible to air attenuation than visual 

and infrared-based RS (Park et al., 2017), can assist is determining the biophysical 

characteristics of crops and soil in both day and night-time environments (Betbeder et al., 

2016). 
 

History of remote sensing in Agriculture 

Agriculture-related activities have long been observed and analysed using remote sensing. 

Long before Eveyln Pruitt of the U.S. Office of Naval Research initially used the phrase “remote 

sensing” in 1958 (Estes and Jensen, 1998). Scientists were conducting soil and crop studies 
related to agricultural areas in the United States and other countries using aerial 

photography (Goodman et al., 1959). The U.S. Department of Agriculture’s general crop 

inventories and the U.S. Soil Conservation Service’s work on soil survey mapping made up 

the majority of this type of work in the 1930s. During World War II, advances in infrared 

photography led to the development of remote sensing methods that improved knowledge of 

crop status, water management and crop-soil conditions. 
Robert Colwell at the University of California conducted ground-breaking research on remote 

sensing in agriculture in the 1950s, and in the 1060s, new labs focused on agricultural 

applications (Landgrebe et al., 1986), like the one at Purdue, were created. Early goals 

included crop identification and areal coverage, and (Bauer et al., 1985) details initiatives like 

the Crop Identification Technology Assessment for Remote Sensing (CITARS) programme and 
the Corn Blight Watch Experiment. 

In an effort to promote the use of remote sensing technologies, NASA started sponsoring a 

few colleges through its University Affairs Program in the early 1970s. As a result, states 

where agricultural constituted a significant component of the economy started using remote 

sensing in that industry. Early contributors to the development of remote sensing science in 

agriculture included centres and laboratories like those at Purdue and Kansas, and their 
work was crucial in determining the spectral bands that would eventually be used in sensor 

systems. 

Many different types of sensors have been used in subsequent investigations and remote 

sensing has shown to be capable of supplying the necessary timely and trustworthy data for 

a fraction of the price of conventional information gathering techniques.  
The Large Area Crop Inventory Experiment (LACIE) was the first U.S. government-sponsored 

project designed to test the viability of estimating wheat production across wide geographic 

areas using remotely sensed satellite data, primarily Landsat. The National Research Council 

first suggested the notion in 1960, and it was only with the launch of the first Landsat sensor 

configuration in 1972 that the potential of measuring wheat output across large areas became 

a reality. Under the joint direction of NASA, NOAA and USDA, the LACIE programme was 
managed. 

The focus of the study in 1974-75 was on creating yield-estimation models for the American 

Great Plains as well as spectral “signatures” for wheat. The Soviet Union and Canada were 

added to the activities later on. Due to LACIE’s results, a subsequent project named 

Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing was 

launched in 1980. (AgRISTARS). Expanding on LACIE, this new programme aimed to monitor 
various crops, including wheat, barley, corn, cotton, rice, soybeans and cotton. Specifically, 
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semileptonic decays of heavy mesons, while information on the history of remote sensing 

science historically offers agricultural applications as well (Reeves 1975). 
 

Remote sensing applications in Agriculture 

Applications for remote sensing in agriculture rely on the interaction of electromagnetic 

radiation with plant or soil components. Instead of measuring transmitted or absorbed 

radiation, remote sensing often measures reflected radiation (Apostol et al., 2003). Non-

contact measurements of radiation reflected or emitted from agricultural fields are referred 
to as “remote sensing”. 

Satellites, aircraft, tractors and handheld sensors are some of the platforms used to collect 

this data. Proximal sensing refers to measurements taken with tractors and handheld 

sensors, particularly if they do not include measurements of reflected radiation. In addition 

to reflecting, transmitting and absorbing light, plant leaves can also glow or release heat 
(Cohen et al., 2005). 

Historically, crop type mapping, overall crop condition assessment and agricultural acreage 

estimation have all been accomplished using satellite photography. Due to the low spatial 

resolution of sensors, these applications were typically applied over wide areas. However, 

more contemporary satellite sensors with finer resolutions are now making it possible to 

monitor issues like drought stress, flooding and hail damage on-site. 
Stafford (2000) emphasised that changing weather conditions can have an impact on satellite 

photographs. According to Lamb and Brown (2001), low-resolution satellite pictures are only 

useful for large-scale studies and might not be suitable for small-scale farms. Furthermore, 

satellites with higher resolution images, such as QuickBird (2.4 m in VNIR) and ASTER (15 

m ), have lengthy revisit times (1-3.5 and 16 days, respectively), which limits their usefulness 
for any application that could need frequent photographs. Satellites are frequently placed in 

constellations of a new synchronised satellites that cooperate and overlap in ground coverage 

in order to shorten revisit times. 

The amount of radiation reflected from plants varies depending on the wavelength of incident 

radiation and is inversely related to the amount of radiation absorbed by plant pigments. 

Chlorophyll is a pigment found in plants that substantially absorbs light in the visible 
spectrum between 400 and 700 nm (Pinter et al., 2003), especially at wavelengths like 430 

(blue or B) and 660 (red or R) for chlorophyll a and 450 (B) and 650 (R) for chlorophyll 

b.Anthocyanins and carotenoids are two more crucial plant pigments (Blackburn, 2007). 

In contrast, leaf density and canopy structure effects cause plants to reflect more light in the 

near infrared (NIR 700-1300 nm) region. The development of spectral indices that are based 
on ratios of reflectance values in the visible and NIR regions was motivated by this stark 

contrast in reflectance behaviour between the red and NIR portions of the spectrum (Sripada 

et al., 2006). Many different characteristics of plant canopies, including leaf area index (LAI), 

biomass, chlorophyll content, or N content, are evaluated using these spectral indices.  

Based mostly on statistical-empirical connections between yield and vegetation indices, 

remote sensing has been utilised to anticipate crop yields (Thenkabail et al., 2002; Casa and 
Jones 2005). For government organisations, commodities dealers and farmers, information 

on predicted yield is crucial for organising harvest, storage, transportation and marketing 

activities. Clay minerals, calcium or iron oxides, as well as soil moisture and organic matter 

content, all have an impact on how much radiation bare soil reflect (Thomasson et al., 2001; 

Viscarra Rossel et al., 2006). 
According to (Ben-Dor et al., 2010), each soil component has a distinct spectral signature 

and a particular spectral area where reflectance is strongest. In remotely sensed image, bare 

soil and crop canopies are frequently present, and the combination of the two spectral 

signatures frequently makes it difficult to interpret reflectance data. When the reflectance is 

impacted by both sources, spectral unmixing techniques (Demetriades et al., 1990), derivative 

spectra, or spectral indices that account for soil impacts are frequently employed to separate 
information about plant properties (Haboudane et al., 2002). 

Agricultural remote sensing applications are often categorised based on the platform used to 

mount the sensor, including satellite, aerial and ground-based platforms. Based on the 

platform’s altitude, the image’s spatial resolution, and the minimum return frequency for 

sequential imaging, these platforms and the imaging systems that go with them can be 

distinguished from one another. The lowest identifiable pixel’s area is impacted by spatial 
resolution. The smallest pixel’s area reduces as spatial resolution rises, while the 
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homogeneity of the soil or crop properties inside that pixel rises. Poor spatial resolution 

implies large pixels with increased heterogeneity in soil or plant characteristics. Return 
frequency is important for assessment of temporal patterns in soil or plant characteristics. 

Cloud cover frequently severely restricts the availability of remote sensing images from 

satellite and aerial platforms, although ground-based remote sensing is less impacted by this 

restriction (Moran et al., 1997). 

(Dbrowska-Zieliska et al., 2008) used the technique to track the development and yield of 

wheat in Polish circumstances using AVHRR/NOAA pictures. The authors created a model 
that used the LAI and evapotranspiration indices derived from AVHRR pictures to estimate 

wheat yield. (Galvo et al., 2009) investigated the feasibility of estimating soybean production 

using satellite Hyperion hyperspectral pictures and found a strong connection (r = 0.74) 

between vegetation indices and weight of harvested seed. The artificial neural network-based 

model created by Li et al., (2008) allowed for the regional-scale prediction of maize and 
soybean yields using MODIS sensor data. Results from the model have an accuracy of 85%. 

Using a calibrated version of the model created by (Doraiswamy et al., 2004) investigated the 

potential use of MODIS satellite data for yield predictions (2008). Using measurements of 

ground reflectance, the model was calibrated. Simulated yield figures for maize and soybeans, 

which differed by 3.12 and 6.62 percent, respectively, were in good agreement with yields 

reported by the USDA-National Agricultural Statistics Service (NASS).  
Farmers are using the GIS (Geographic Information System) as a potent tool to aid in better 

decision-making. Due to the fact that technology gives farmers precise, timely and spatially 

explicit information about their land and crops, GIS has become a crucial part of modern 

agriculture.  

Precision Agriculture is one of the most important GIS applications in agriculture. GIS is used 
in precision agriculture to produce maps that depict the field’s variability, including the 

terrain, vegetation and soil characteristics. Farmer decision about planting, fertilising and 

irrigation can be improved by the analysis of these maps, leading to increased crop yields and 

lower input costs (Mishra & Lal, 2017). 

By providing spatially explicit information on the land and its potential for agricultural use, 

GIS is used to enhance land planning. With consideration for elements like soil type, climate 
and geography, GIS can be used to pinpoint farm regions that are suited for certain crops. 

With better agricultural planting and location choices made using this information, 

productivity and profitability are increased (Tishechkin et al., 2016). 

Using spatially explicit information about water supply, demand and use GIS is used to 

support water management in agriculture. GIS may be used to pinpoint the farm’s water-
scarce zones, choose the best spots for irrigation systems, and keep and eye on water use un 

real time. Making better judgements about when to irrigate, how much water to apply and 

when to convert to more drought-tolerant crops is possible with the help of this knowledge 

(Abde-Hamid et al., 2018). 

 GIS, which gives farmers and researchers the ability to analyse and interpret spatial data, is 

becoming more and more significant in the agricultural sector. Although precision 
agriculture, crop monitoring, land use planning and water management have all been 

transformed by GIS, there is still a tremendous possibility for new applications. 

To estimate future agricultural yields, GIS can be used to assess past crop yields in a specific 

area coupled with environmental parameters like climate and soil composition. Farmers may 

make data-driven decisions about which crops to plant, when to plant them, and how to 
manage them for the best yield by combining these predictions with machine learning 

algorithms (Kartika et al., 2021). Farmers may automate numerous farming chores by 

combining GIS with precision agriculture technologies like GPS-guided tractors, drones and 

sensors. This can lead to increased productivity, lower labour costs, and more accurate crop 

management (Giasi et al., 2021).  

The distribution and make-up of agro-forestry systems, which integrate trees with crops or 
livestock, can be mapped using GIS. Farmers can maximise their use of land and resources 

by comprehending the spatial linkages between these systems and their effects on the 

environment (Stocker et al., 2019). GIS can be used pinpoint regions most at risk from 

drought, flooding and other climate-related problems as climate change continues to affect 

crop-growing conditions. Farmers can create plans to modify their methods and lessen the 

effects of climate change by studying these risks (Folberth et al., 2016). 
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Along the supply chain, GIS may be used to track the movement of livestock and crops, 

enhancing traceability and ensuring food safety. Farmers may monitor the conditions under 
which crops are grown and transported, lowering the danger of contamination, by integrating 

data from sensors and other sources (Chung et al., 2019). By providing real-time information 

regarding soil moisture, weather and crop water requirements, GIS can be utilised to optimise 

irrigation management. Farmers can make data-driven decisions about when and how much 

to irrigate, minimising water loss and increasing crop output, by combining this information 

with decision support systems (Yu et al., 2021). 
GIS may be used to map the location and density of cattle on a farm as well as other 

environmental elements like humidity and temperature. Farmers may monitor the health and 

wellbeing of their animals by combining this data with sensors and other technologies, which 

minimises the need for antibiotics and other interventions (Berckmans et al., 2019). GIS may 

be used to map the distribution, composition and physical and chemical characteristics of 
different types of soil. Farmers may employ fertilisers and other soil amendments to the best 

of their ability by understanding the spatial correlations between different soil types and 

environmental elements like water availability and nutrient content (Deb and Shukla, 2017). 

Rooftop gardens, community gardens and vertical farms are just a few examples of urban 

agriculture systems whose distribution and attributes can be mapped using GIS. Planners 

can create plans to increase food security and lessen the environmental impact of 
metropolitan areas by examining the spatial relationships between these systems and their 

effects on the environment (Castillo et al., 2018). Using GIS and block-chain technology can 

result in a secure and transparent system for following agricultural items from the farm to 

the customer. Customers can track the origin and travel of their food by utilising GIS to 

generate a digital supply chain map and block-chain technology to produce and 
unchangeable record of transaction, while farmers can get fair pricing for their goods (De 

Longueville et al., 2021). 

Remote sensing techniques have revolutionized sustainable agriculture and green farming 

practices by providing valuable information on soil, vegetation and water resources (Huang 

et al., 2017). Remote sensing can monitor large areas and capture data that is difficult to 

obtain by conventional ground-based methods (Lu et al., 2019). Remote sensing can be used 
to manage resources more efficiently, optimize inputs and reduce environmental impacts 

(Duan et al., 2020). Remote sensing has several applications in sustainable agriculture, such 

as crop classification, yield estimation and soil moisture mapping (Jiang et al., 2021). Remote 

sensing can be used to assess crop health and detect stress caused by pests, diseases or 

environmental factors (Santos et al., 2020). This information can be used to optimize fertilizer 
and irrigation inputs, leading to more efficient resource use and increased yields (Shao et al., 

2019). 

Remote sensing techniques can be used to estimate crop yields accurately by analysing the 

spectral data from crops. Machine learning algorithms such as random forests, artificial 

neural networks (ANNs), and support vector machines (SVMs) can be used to process this 

data and generate accurate predictions (Gholizadeh et al., 2020; Khan et al., 2021). Satellite 
imagery and aerial photographs can be used to classify crops based on their spectral 

properties. ML (machine learning) techniques such as SVMs, decision trees and object-based 

image analysis (OBIA) can be used for crop classification. This information can be used for 

precision agriculture practices such as variable rate application of fertilizers, pesticides and 

irrigation (Chakraborty et al., 2020; Jiang et al., 2021). Remote sensing and GIS can be used 
to monitor crop growth and development. This includes monitoring plant health, identifying 

nutrient deficiencies and detecting pest and disease outbreaks. ML (machine learning) 

algorithms such as convolutional neural networks (CNNs) and deep learning models can be 

used to analyse the large amounts of data generated by these technologies (Luo et al., 2020; 

Lu et al., 2021). Remote sensing and GIS technologies can be used for precision agriculture 

practices, including variable rate application of fertilizers, pesticides and irrigation. ML 
(machine learning) algorithms can be used to analyse the data generated by these 

technologies to optimize agricultural practices (Yang et al., 2020; Zheng et al., 2021). The 

integration of remote sensing, GIS and AI (artificial intelligence) /ML(machine learning) 

technologies has greatly improved the efficiency and sustainability of agriculture practices.  

Green farming practices aim to reduce the environmental impact of agriculture by minimizing 

inputs and waste while maximizing productivity (Von Fragstein et al., 2019). Remote sensing 
can support these practices by providing information on crop growth and health, soil 

https://iabcd.org.in/


INTERNATIONAL ASSOCIATION OF BIOLOGICALS AND COMPUTATIONAL DIGEST 
International & Peer-Reviewed Journal 

E-ISSN: 2583-3995 

Volume II Issue I 
January-June 2023 

Page113 

https://iabcd.org.in/ 

properties and water use efficiency (Kamble et al., 2020). For example, remote sensing can 

be used to optimize irrigation schedules and detect leaks, leading to water savings and 
reduced environmental impact (Wang et al., 2019). Despite the benefits of remote sensing, 

there are several challenges to its implementation, such as the need for specialized training 

and equipment, limited accessibility in some regions, and data processing and interpretation 

issues (Liang et al., 2021). Future research should focus on developing user-friendly tools 

and platforms that can integrate remote sensing data with other sources of information to 

provide actionable insights for farmers (Yu et al., 2020). Additionally, the development of new 
remote sensing technologies, such as hyperspectral imaging, can provide more detailed 

information on crop health and nutrient status, leading to more precise and efficient 

management practices (Wang et al., 2021). 

Remote sensing has great potential for supporting sustainable agriculture and green farming 

practices. By providing valuable information on soil, vegetation and water resources, remote 
sensing can help farmers optimize inputs, reduce waste, and increase yields while minimizing 

environmental impacts. Although there are challenges to its implementation, future research 

should focus on developing user-friendly tools and platforms and new remote sensing 

technologies to unlock the full potential of this technique in agriculture. 

 

CONCLUSION  
There is unquestionably a need for better management of the world’s agricultural resources 

due to growing population pressure and the requirement for enhanced agricultural 

production. To accomplish this, it is first important to gather trustworthy information on the 
types, quality, amount and locations of resources. Aerial or satellite-based RS technologies 

will be crucial instruments for enhancing the current systems for collecting and producing 

data on agriculture and natural resources. Currently, surveys on agriculture are carried out 

all over the world to collect empirical data on crops, rangeland, livestock and other 

agricultural resources. Remote sensing has revolutionized sustainable agriculture and green 
farming practices by providing valuable information on soil, vegetation and water resources. 

It can optimize inputs and reduce environmental impacts. Challenges to its implementation 

include limited accessibility, the need for specialized training and data processing issues. 

Future research should focus on developing user-friendly tools and platforms to integrate 

remote sensing data with other sources to provide actionable insights. Remote sensing holds 

immense potential in promoting sustainable agriculture and green farming practices. 
The use of remote sensing in precision agriculture, which has been increasing quickly in 

recent years, is often related to the examples given above. This farm management strategy’s 

primary goal is to maximise input returns while promoting environmental stewardship. 

Precision agriculture uses very modern technologies, which means that it needs ongoing 

access to information about the environmental factors affecting this production. Such data 

are essential for the efficient management of finite and diminishing resources. The planning 
and distribution of scarce resources to various economic sectors can be facilitated by surveys 

that are based on the PA idea. Based on the biophysical characteristics of crops and/or soils, 

RS technology has the potential to revolutionise the detection and characterisation of 

agricultural productivity. The information obtained from RS data is, in essence, more useful 

when combined with ground data, just like other PA components. Agronomic and economic 
decision-making can be reliably supported by precise and timely information provided by RS, 

despite the fact that it cannot collect all sorts of agricultural information.  
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